數學符號、語言與精確性
主要內容
編輯我們現今所使用的大部分數學符號在16世紀後才被發明出來的。[1]在此之前,數學以文字的形式書寫出來,這種形式會限制了數學的發展。現今的符號使得數學對於專家而言更容易掌握,但初學者卻常對此感到怯步。它被極度的壓縮:少量的符號包含着大量的訊息。如同音樂符號一般,現今的數學符號有明確的語法,並且有效地對訊息作編碼,這是其他書寫方式難以做到的。符號化和形式化使得數學迅速發展,並幫助各個科學領域建立基礎支撐理論。
數學語言
編輯數學語言亦對初學者而言感到困難。如「或」和「只」這些字有着比日常用語更精確的意思。亦困惱著初學者的,如「開放」和「域」等字在數學裏有着特別的意思。數學術語亦包括如「同胚」及「可積性」等專有名詞。但使用這些特別符號和專有術語是有其原因的:數學需要比日常用語更多的精確性。數學家將此對語言及邏輯精確性的要求稱為「嚴謹」。但在現實應用中,捨棄一些嚴謹性往往會得到更好的結果。
數學嚴謹與數學證明
編輯嚴謹是數學證明中很重要且基本的一部份。數學家希望他們的定理以系統化的推理依著公理被推論下去。這是為了避免依著不可靠的直觀而推出錯誤的「定理」,而這情形在歷史上曾出現過許多的例子。[2]在數學中被期許的嚴謹程度因着時間而不同:希臘人期許著仔細的論證,但在牛頓的時代,所使用的方法則較不嚴謹。牛頓為了解決問題所做的定義,到了十九世紀才重新以小心的分析及正式的證明來處理。今日,數學家們則持續地在爭論電腦輔助證明的嚴謹度。當大量的計算難以被驗證時,其證明亦很難說是足夠地嚴謹。
公理在傳統的思想中是「不證自明的真理」,但這種想法是有問題的。在形式上,公理只是一串符號,其只對可以由公理系統導出的公式之內容有意義。希爾伯特計劃即是想將所有的數學放在堅固的公理基礎上,但依據哥德爾不完備定理,每一相容且能蘊涵皮亞諾公理的公理系統必含有一不可決定的公式;因而所有數學的最終公理化是不可能的。儘管如此,數學常常被想像成只是某種公理化的集合論,在此意義下,所有數學敘述或證明都可以寫成集合論的公式。
註解
編輯- ↑ 不同數學符號的各別最早用途 (包含有更多的參考資料)
- ↑ 關於在正式的證明中出錯的一些簡單例子,參見無效證明。在四色定理的歷史中,亦有個曾被其他數學家所接受的錯誤證明。