學科:科學史
科學是一個實證和理論知識的集合體,由世界上研究者的社群產生,運用特別的技術對真實現象作觀察與解釋,此技術總結在科學方法欄目底下。就其本質而論,科學史利用了思想史和社會史兩個面向的歷史研究方法。科學起源於對自然其功能性的實用考量以及純粹的哲學探究。
雖然科學方法自古便不斷發展,但現代科學方法卻是始自伊斯蘭科學家,海什木(Alhazen)在大約西元1000年左右,運用實驗的經驗法則寫出了一本關於光學的書。然而,現代科學方法在13世紀的歐洲由大學經院哲學的學者所發起科學革命時,方才算發展完全[1],到了16世紀及17世紀早期的發展高峰,現代科學方法的廣泛應用更引領了知識的全面重估。科學方法的發展被某些人(尤其是科學哲學家及實證科學家)認為是太過於基礎而重要的,認為早先對於自然的探索只不過是前科學(pre-scientific),現代科學方法才被他們認為是真正的科學。習慣上,科學史學家仍舊認定早先的科學探索也包含於廣大而充足的科學範疇之中。[2]
數學史、科技史及哲學史則在其各自的條目中描述。數學跟科學很接近但有所區別(至少在現代的觀念上是這樣認為)。科技涉及設計有用的物件和系統的創造過程,跟尋求傳統意義上的真理(empirical truth)又有所不同。哲學跟科學的不同在哲學還尋求其他的知識領域,如倫理學,即便自然科學和社會科學也都是以既定的事實作爲理論基礎。實際上這些領域都作爲外在的重要工具為其他領域所用。
科學史的理論與社會學
編輯研究科學史大都在從事回答:「科學是什麽?」和「它如何運作」,以及它是否顯示出大規模的形式和趨勢。特別是科學社會學(sociology of science)專注於科學家工作的方法,尤其注重觀察在他們「產生」和「建立」科學知識時的方法。自1960年代以來,科學研究(science studies)一個共同的趨勢,就在強調科學知識的「人的成分」,而不再強調科學資料是自顯的、無關價值和前因後果的這個觀點。
在哲學上,科學的一個主要議題和其爭論焦點,正是關於理論改變這一範疇。有三個哲學家曾討論過這個題目。其一是卡爾·波普,指出科學知識是長年累月的累積,具有前進性;其二是湯瑪斯·孔恩,認為科學知識是一個範式轉換(paradigm shift)的過程,而非單單是具前進性;其三是保羅·費耶阿本德,其觀點是科學知識並非長久的累積也不具前進性,而是一個類別的劃界(demarcation)。
自孔恩著作《科學革命的結構》(The Structure of Scientific Revolutions)於1962年出版以來,學界一直辯論著關於「科學」的定義和目標。通常都沒有一致答案,尤其是關於在「真實性」的概念上,更曾一度引致觀點上的衝突。
早期的文化
編輯在史前時代,知識早就以代代相傳方式保存著。到人類踏入農業耕作的時代,寫作的流行使知識能得以傳到千秋萬代。最基本、最古老的科學知識,首推天文學。
古時許多文明國家,都會利用觀察收集天文上的資料,並以系統性方式紀錄。雖然並沒有嚴謹的研究方式,許多關於行星和星系的自然現象,都開始有了理論上的闡釋。
一些人體結構的研究開始顯現,並且開始有人觀察動物和植物的特質;同時一些煉金術的理論,也在幾個主要文明出現。這是化學的原始面貌。
新月沃土的科學
編輯早在公元3500年前,中東的幼發拉底河一帶(即今伊拉克)的人,已開始發展出一套以數學概念,紀錄自然現象的方式。但是這些觀察都只是有其他目的,而非純粹自然科學研究。舉例當時已有類似畢氏定理的數字研究紀錄,包含了一系列的數組——(3,4,5)、(5,12,13)。但這始終都未能證明這些是畢氏定律的研究。
同時在古埃及,天文學、數學和醫藥研究都開始有了雛型。幾何學被普遍應用於土地測量,如「3、4、5」直角三角形等資料紀錄,代表著古時的埃及已發展出一個實質的幾何體系。而煉金術在古埃及也是重要項目。
古典時期的科學
編輯在古典時期,面對著一些實際性問題的解決,包括編製曆法和疾病治療,純粹的自然科學研究慢慢開始興起。當時從事科學研究的人,通常不被稱作「科學家」,而被視為科學上的哲學家。
最早期的科學哲學家起源於古希臘。最早的一群曾向人發問過一個問題:「宇宙是從何而來?」。其後以柏拉圖和亞里斯多德等為首的後起者,相繼出版了首批的自然哲學著作。雖然著作裡的理論並不是相當具結構,並有一些理論被後世推翻,但卻為後世的科學探索,奠下重要基礎。
在這段期間,不同形式和類型的科學,都開始有個雛型。這包括了動物學、植物學、天文學等等;而一些像物理和數學的簡單理論,也開始出現。最典型的例子,首推畢達哥拉斯發表的畢氏定理;阿基米德發現了「槓桿原理」和「力矩」的觀念。
印度的科學
編輯中國的科學
編輯中國有悠久豐富的技術創新的歷史。古代中國的四大發明是指南針、火藥、造紙和印刷。
中國古代偏重於技術的研究,精於記錄天象,但對科學理論的探究較少,更缺乏邏輯的、系統的科學體系。
在各個時期中對中國科學領域有顯著貢獻的人很多。其中一個最佳的例子是沈括(1031年-1095年),一名通才的科學家兼政治家,他是第一位描述航海用磁製指南針的人,此外他還發現了真北的概念,改進了天文觀測用的日規、渾天儀、瞄準管和水鐘以及描述了如何使用乾船塢來修理船隻。在觀察過淤泥的自然淹沒過程和太行山上的海洋化石後,沈括想出了一套陸地形成(或地形學)理論。他還在觀察過陝西延安的石化竹子後,採納了一套區域氣候隨時間漸變的理論。如果沒有沈括的著作的話,很少人會知道喻皓的建築,還有活字印刷的發明者畢昇(990年-1051年)也是。沈括的同期人蘇頌(1020年-1101年)也是一名優秀的通才,他創製了星圖的天球圖集,寫過跟植物學、動物學、礦物學及冶金學相關的製藥專著,還於1088年在開封市建過一座大型天文鐘樓。為操作最高處的渾天儀,他的鐘樓配備了擒縱器裝置,這裝置世界已知最古老的環狀動力傳輸的鏈傳輸裝置。
十六及十七世紀時的耶穌會中國任務「學會了欣賞這古文化的科學成就,並將它們在歐洲傳播,讓那兒的人們知道。歐洲科學家就是從這些通訊中第一次得悉中國的科學和技術。」[3] 西方學者對中國科技的思潮是由李約瑟(Joseph Needham)和李約瑟研究所所激發的。中國的技術成就包括早期的地震儀(公元二世紀張衡的候風地動儀)、水力天球儀(張衡)、火柴、獨立發明的十進制、乾船塢、滑動卡尺、雙重動力的活塞泵(風箱)、鑄鐵、高爐、鐵犁、多管型播種器、獨輪手推車、吊橋、簸榖機、旋轉扇、降落傘、燃料用的天然氣、地形圖、螺旋槳、弩、及一支固體燃料火箭、多級火箭、馬軛,還有邏輯學、天文學及醫學等其他領域的貢獻。
然而,文化因素使得這些中國成就並沒有發展成能稱得上「科學」的學問。[1] 根據李約瑟的說法,使得中國知識分子不能夠相信自然定律這概念的,是他們的宗教和哲學結構:
不是中國人眼中的自然沒有秩序,而是他們有的不是由一個理性的人所訂下的秩序,因此說理性的人們能用沒那樣世俗的語言,去闡明他很早以前就制定好的神聖法典,這是沒有說服力的。當然,道教人士會藐視這樣的一個見解,說它對於他們憑直覺所知的宇宙微妙處和複雜性來說,那實在是太幼稚了。[4]
中世紀
編輯自古羅馬帝國崩潰後,歐洲踏入中世紀。這時歐洲進入了一個封建制年代,整個知識都是由教廷壟斷,只有東面的拜占庭帝國還是學術中心。科學在這時無從在歐洲發展,一直到十二至十三世紀為止。
伊斯蘭的科學
編輯與此同時,希臘哲學已經在中東世界的阿拉伯酋長處獲得了一定支持。在7至8世紀間,伊斯蘭教蓬勃發展,給科學技術的研究提供了良好的環境。由各方贊助的獎勵制度一直持續到了14世紀。此外,中東通行的阿拉伯語使各國的科學技術交流得以無障礙地進行下去。從拜占廷帝國得到的希臘和羅馬科技文章與印度傳來的研究成果為中東的科技研究提供了一個完整的根基。麥加朝聖也給了全伊斯蘭世界的科技學者們合作交流的機會。
伊斯蘭科學家對實驗的重視遠超過希臘人。波斯數學家穆罕默德·阿爾·花拉子模(Muhammad ibn Musa al-Khwarizmi)在數學上作出了傑出的貢獻。現在通行的「算法」(Algorithm)即是從他的名字演變而來。[5]「代數學」(Algebra)一詞則是由他的一本著作「al-jabr」演變而來的。薩比科學家巴塔尼為天文學和數學作出了很大的貢獻,而波斯人拉齊則在化學上有卓著成果。巴塔尼為希巴克斯的測量方法做了改進,這在他的《大成》中有記載。巴塔尼也為地球軸長的測量作出了貢獻。阿拉伯鍊金術雖然嚴格地說不算是科學,但是其主要思想影響了羅傑·培根,使他發明了實驗理論。阿拉伯鍊金術也對艾薩克·牛頓有很大影響。
從十二世紀復興的歐洲科學
編輯十二世紀歐洲出現了中世紀大學,標誌著知識界在歐洲復興。同時十字軍東征使歐洲開始與伊斯蘭世界接觸。頻繁的通商容許了文化的交流,令教廷在知識上壟斷地位,受到前所未有的衝擊。舉例十二世紀義大利旅行家馬可波羅到中國旅遊,並在回國後著有《馬可波羅遊記》,使歐洲人的眼界有所擴闊。
種種因素都助長了文藝復興的興起。城市在義大利崛起,住有大量新資產階級。他們都信奉新柏拉圖主義,希望擺脫宗教禁慾主義的束縛,大力保護藝術家對世俗生活的描繪。與此同時聖方濟各會的宗教激進主義,力圖摒棄正統宗教的經院哲學,歌頌自然的美和人的精神價值。這時羅馬教廷也在走向腐敗,歷屆教宗的享樂規模,比一般民眾還要厲害。他們也在保護藝術家,允許藝術偏離正統的宗教教條。哲學、科學都在逐漸地在比較寬鬆的氣氛中發展,也醞釀著宗教改革的前奏。
這段期間最為明顯的變化乃天文學。當時教廷強調「天動說」,認為太陽是圍繞著地球旋轉。波蘭人哥白尼是第一位提出太陽為中心——日心說的歐洲天文學家,一般認為他著的《天體運行論》是現代天文學的起步點。其後經義大利科學家伽利略的提倡,「地動說」開始傳播甚廣,進而導致教廷把其軟禁。
這時的科學發展乃自古希臘以來最為發達,其發達程度甚至超越了古希臘時代。如伽利略便最先使用科學實驗和數學分析的方法研究力學。他認為選擇得當的數學證明,可以用來探索任何牽涉到定量性的問題。同時期的克卜勒除了在天文上提出了嶄新的見解外,還首度以幾何概念發展出光學概念。
科學革命
編輯文藝復興使歐洲知識界重視生機,不但天文學、數學、物理學,包括化學、生物、醫藥等領域都有創新見解。其對科學所產生的影響力,至今仍非常深遠。大多科學史專家都認為十四至十八世紀乃科學革命的年代。其中部分更認為自哥白尼於1543年出版著作《天體運行論》開始,歐洲已踏入科學革命時代。
在這段時期的科學思想家包括:
- 安德烈·維賽留斯(Andreas Vesalius):1543年出版了《人體構造》,解釋了血液在人體內循環的過程,還從解剖屍體組裝了第一副人類骨架。
- 威廉·吉爾伯特(William Gilbert):1600年出版了《磁石論》,是物理學史上第一部系統闡述磁學的專著。
- 第谷·布拉赫(Tycho Brahe):對十六世紀末期所認知的星體進行了詳細並且準確的觀測,為克卜勒的研究提供了基本數據。
- 弗蘭西斯·培根(Francis Bacon):通過分析和確定科學的一般方法和表明其應用方式,給予新科學運動以發展的動力和方向。
- 威廉·哈維(William Harvey):通過解剖等手段展示了血液的循環。
- 勒奈·笛卡爾(René Descartes):演繹推理的先驅,1637年出版了《方法論》。
- 安東·范·列文霍克(Antony van Leeuwenhoek):建造了高清晰度的單顯微鏡,研究了毛細管循環和肌肉纖維。他觀察了血球、精子與細菌,並繪出了它們的形象。於1683年發現了細菌。
- 艾薩克·牛頓(Isaac Newton):1687年7月5日發表的《自然哲學的數學原理》,提出的萬有引力定律以及牛頓運動定律,是經典力學的基石。牛頓還和萊布尼茨各自獨立地發明了微積分。
現代科學
編輯科學革命使世界科學推上了一個前所未有的巔峰。它使科學知識內容大大擴充,而絕大多數都是今日研習科學者必須認識到的知識,例如地動說和牛頓運動定律等等。到了十九世紀,科學研究已變得相當具系統,並分成不同派別,一直延至二十世紀。
自然科學
編輯物理學
編輯在物理史上,科學革命乃古希臘時代科學哲學和古典物理的分水嶺。波蘭人哥白尼首先以日心說否定了過去人們一直深信不疑的天動說。其後德國人克卜勒也發展出其行星運行的模型,提出行星乃按其軌跡而圍繞著太陽運行。同時義大利人伽利略除不斷強調其地動說外,還發展出多項基本的力學理論。
到了1687年,英國人牛頓出版了《自然哲學的數學原理》,詳細地說明了兩個既複雜又成功的物理理論:牛頓三大運動定律和萬有引力定律,皆建立了古典力學的根基。電子和磁力的研究以英國人法拉第和德國人歐姆為首,時為十九世紀。
二十世紀初的物理學也出現了革命性變化,代表者為愛因斯坦。他於1905年發表了四篇劃時代的論文,分別為:《關於光的產生和轉化的一個啟發性觀點》、《根據分子運動論研究靜止液體中懸浮微粒的運動》、《論運動物體的電動力學》、《物體慣性與其所含能量有關嗎?》,隨後導出了E = mc²的公式。這被統稱作相對論,主要是對牛頓力學的概念作出了修正。這對物理學也影響深遠,因為愛因斯坦的理論,根本性地修訂了過往科學界深信的知識,時到今天仍然備受討論。
二次大戰期間更進一步發明出現。這包括了雷達和原子彈。這些技術日後皆被各國政府用作軍事上,對日後的軍事技術產生深遠影響。
化學
編輯現代化學的歷史在科學革命年代,早已由煉金術轉化到現代化學領域。1661年愛爾蘭人波義耳發現了氣體定律。其後法國人拉瓦錫更有前瞻性理論──對過去人們深信不疑的燃素說作出全面否定;倡導質量守恆定律,指出物質作轉化時其質量不變。同時他還推論,動物的呼吸實質上是緩慢氧化。
踏入十九世紀,又有英國人道爾頓確立了「物質是由粒子組成」的理論。1869年俄羅斯人門得列夫編製了元素週期表,把物質中數十個元素列舉出來。這兩人的研究對日後也影響深遠,前者為日後的粒子理論奠下基礎;後者則成為了化學的基本知識。今日的化學教科書,都少不了元素週期表。
地質學
編輯遠在十一世紀,中國的科學家沈括已率先提出了地形結構的原理。他從原油的產地觀察,認為原油產地過去乃海洋一片,後因地形轉化,使部分物質轉化為原油。
而在西歐,學界一直相信泰奧弗拉斯托斯對岩石的解說,一直到科學革命為止。1700年,兩位法國人古德達和德斯馬拉特在法國中部行山,並把他們觀察紀錄成一地圖。前者記錄了首個火山的觀察。1788年詹姆士‧赫頓出版其著作《地球的理論》,其理論被稱作均變學說。
1811年兩位法國動物學家古菲爾和博格尼特出版了一著作,從他們在巴黎發現的大象化石,闡述了他們對地球結構的看法。這個觀點後來成為地層學的重要理論基礎。而英國人查理斯·萊爾的《地質學原理》更把詹姆士‧赫頓觀點進一步強化,影響日後達爾文的進化論。
到了二十世紀,地質學更有革命性看法。以韋格納為代表的「板塊構造理論」,把地球外殼由板塊組成的觀點進一步擴大。
天文學
編輯天文在科學革命以降受到光學儀器漸發達影響,也可圈可點。1801年首粒穀神星被發現;1846年海王星也被發現。
二十世紀中來自美國的喬治·伽莫夫、拉爾夫·阿爾菲、羅伯特·赫爾曼,通過計算推論出有證據顯示,宇宙間曾有大爆炸的痕跡。這些證據被視為計算宇宙歷史的基礎。
其後六十年代美國和蘇聯開始進太空科技競賽,計有1961年蘇聯派出世界第一個太空人加加林登上太空;後美國也派出岩士唐等太空人升空,歷史性地首次登陸月球。其後各項太空發明相繼面世,包括人造衛星、火箭和太空梭等等。
生物學、醫學和遺傳學
編輯1847年匈牙利物理學家斯姆威爾茲戲劇性地發現減低孕婦患上產後熱機會的技術──在孕婦生產時協助她們清洗頭部。提前了微生物致病論的發現,不過斯姆威爾茲的發現在當時並未受到重視。直到1865年,由英國外科醫師約瑟夫·李斯特證實了消毒法之後,微生物致病論才得以應用。李斯特的研究是基於法國生物學家路易·巴斯德的重要發現,巴斯德連結了疾病與微生物的關係,造成醫學的革命。此外他在1880年所生產的狂犬病疫苗,使預防醫學上的重要方法誕生。巴斯德發明了一種稱為巴斯德殺菌法的技術,防止疾病經由牛奶或食物傳遞。
1859年,英國博物學家查爾斯·達爾文在《物種起源》中,首先提出了以自然選擇為主的演化理論,這可能是科學上最為顯著,且影響深遠的一個理論。達爾文提出各種不同的動物,是經歷了長時間的自然進程之後成形,甚至連人類也是如此演化而來的生物。演化論引起了社會上的反對和支持聲浪,並深切地影響了大眾對於「人類在宇宙中的地位」之理解。到了20世紀早期的1900年代,奧地利僧侶格里哥·孟德爾在1866年所發展的遺傳定律被重新發現,之後遺傳成為了主要的研究對象。孟德爾定律是遺傳學研究的起始關鍵,此學門也成為科學與產業上的主要研究領域之一。1953年,詹姆斯·沃森、佛朗西斯·克里克和羅莎琳·富蘭克林闡明了DNA,也就是使所有生物型態得以表現的遺傳物質的基本結構[6]。到了20世紀晚期,遺傳工程的可能性,使首次的大規模國際性計畫,也就是解開人類的整個基因組的人類基因組計畫在1990年代展開。此研究結果在分子生物學和醫學上有相當大的利用價值。
生態學
編輯生態學學科的起源,一般可追溯到19世紀末到20世紀初,達爾文演化論與洪堡生物地理學的融合。此外,微生物學與土壤科學對於生態學的開端也相當重要,尤其是路易·巴斯德與費迪南·科恩的生命週期概念。「生態」(ecology)一詞是由恩斯特·海克爾所鑄造,主要是以整體觀點(以及達爾文理論的輔助)來研究自然界,對於是生態學思想的散佈相當重要。1930年代,亞瑟·譚斯雷與其他人開始發展生態系生態學領域,統合了實驗性質的土壤科學,以及田野生物學的生理能量概念與研究方法。20世紀的環境保護主義與生態學有密切的聯繫,1960年代的蓋亞假說,以及較晚近的深生態學上的科學-宗教運動,使兩者關係更為密切。
政治科學
編輯對政治的研究最早可見於西方文化中的古希臘,政治學是在社會科學出現後方產生的術語。然而,這門學科確有一系列先驅,如倫理學、政治哲學、政治經濟學、歷史學等等,以及有關理想化的政府所應具備的特徵和運作方式的探究。在每個歷史階段和每個地區,都可以找到研究政治和試圖不斷增進對政治理解的人物。
政治學研究可以溯源到柏拉圖和亞里斯多德以前的荷馬、赫西俄德、修昔底德、色諾芬和歐里庇得斯的著作。後來,柏拉圖研究了政治系統,他將以往的文學和歷史角度的分析抽象化,使用了一種我們可以理解為類似哲學研究的方法。亞里斯多德在柏拉圖的基礎上,建立了基於歷史經驗證據的研究方法。
在古羅馬統治時期,著名歷史學家歐里庇得斯、蒂托·李維和普魯塔克記錄了羅馬共和國的興起,以及其他國家的歷史和起源,同時象愷撒和西塞羅等政治家為我們提供了羅馬共和國和帝國的戰爭和政治生活畫面。這個時代的政治學研究關注於理解歷史,治理方法和政府運作方式。
隨著羅馬帝國的衰落,政治研究的領域蔓延開來。西方傳統上的一神教興起,特別是基督教為政治和政治行為打開了新的空間。在中世紀,對政治的研究遍及教會和法庭。聖奧古斯丁的《上帝之城》一類的著作將當時的哲學和政治傳統與基督教相融合,重新定義了宗教與政治的界限。大部分有關政府與宗教的問題在這一時期得到辯論和澄清。
語言學
編輯經濟學
編輯古典經濟學的基礎是來自亞當·斯密於1776年出版的的《國富論》。亞當·斯密批評重商主義,提倡「分工」的自由貿易體系。它假定有一隻「看不見的手」藉由個人追求自身利益而使得巨大的經濟體系得以自我規範。馬克思建立了一個替代的經濟體系,叫做「馬克思經濟學」(Marxian economics)。馬克思經濟學是以勞動價值理論為基礎來運作的,並假設商品的價值主要是來自於生產時所需勞力的投入。在此假設之下,「資本主義」的雇主就未付出足夠的報酬合於勞工所生產的利益。而奧地利經濟學派則認為實業家才是經濟發展的驅動力,並利用供給和需求來取代勞動價值理論。
在1920年代,凱恩斯主張區分總體經濟學及個體經濟學。在凱恩斯主義架構之下,總體經濟學趨向個人造成"整體"的經濟學選擇。政府應提升對商品的總體需求來刺激經濟擴張。在第二次世界大戰時,米爾頓·傅利曼創造了貨幣主義的概念。貨幣主義關注使用金錢的供給與需求來作為控制經濟活動的方法。在1970年代,貨幣主義轉變為供給面經濟學,是以減稅作為增加貨幣流通量進而促使經濟擴張的方法。
其他的經濟學派還有新古典派經濟學及新凱恩斯經濟學等等。新古典派經濟學是從1970年代開始形成,強調以穩固的個體經濟學基礎發展總體經濟學。新凱恩斯經濟學某些程度來說是創造來回應新古典派經濟學,處理需要被央行或是政府所控制的市場無效率現象。
心理學
編輯社會學
編輯人類學
編輯新興學科
編輯20世紀,一些跨學科科學領域逐漸形成,例如以下三個領域最為典型:
通信科學結合生物通信、資訊理論、市場學、公共關係學、電子通信以及其他通信學科。
計算機科學建立在理論語言學、離散數學和電子工程基礎上,研究計算的本質和極限。它包括計算理論、計算複雜度、資料庫、計算機網絡、人工智慧、計算機硬體設計等子學科。相對於軟體工程,計算機科學更強調其數學理論基礎,後者則強調程序和軟體設計的實踐。
材料科學植根於金屬學、礦物學和晶體學,同時結合了化學、物理和一些工程學科。材料科學研究金屬、陶瓷、塑料、半導體和合金等材料。
參見
編輯註釋
編輯- ↑ 1.0 1.1 Thomas Woods, How the Catholic Church Built Western Civilization, (Washington, DC: Regenery, 2005), ISBN 0-89526-038-7
- ↑ W. C. Dampier Wetham, Science, in Encyclopædia Britannica, 11th ed. (New York: Encyclopedia Britannica, Inc, 1911); M. Clagett, Greek Science in Antiquity (New York: Collier Books, 1955); D. Pingree, Hellenophilia versus the History of Science, Isis 83, 559 (1982); Pat Munday, entry "History of Science," New Dictionary of the History of Ideas (Charles Scribner's Sons, 2005).
- ↑ Agustín Udías, Searching the Heavens and the Earth: The History of Jesuit Observatories. (Dordrecht, The Netherlands: Kluwer Academic Publishers, 2003). p.53
- ↑ Joseph Needham, Science and Civilization in China, volume 1. Cambrige University Press, 1954. 581.
- ↑ Introduction to Algorithms, Chapter 1
- ↑ James D. Watson and Francis H. Crick. "Letters to Nature: Molecular structure of Nucleic Acid." Nature 171, 737–738 (1953).
參考資料
編輯- Thomas S. Kuhn (1996). The Structure of Scientific Revolutions (3rd ed.). University of Chicago Press. ISBN 0-226-45807-5
- Howard Margolis (2002). It Started with Copernicus. New York: McGraw-Hill. ISBN 0-07-138507-X
- Joseph Needham. Science and Civilisation in China. Multiple volumes (1954–2004).
- Bertrand Russell (1945). A History of Western Philosophy: And Its Connection with Political and Social Circumstances from the Earliest Times to the Present Day. New York: Simon and Schuster.
- John L. Heilbron, ed., The Oxford companion to the history of modern science (New York: Oxford University Press, 2003).
- Deepak Kumar (2006). Science and the Raj: A Study of British India, 2nd edition. Oxford University Press. ISBN 0-19-568003-0
- George Rousseau and Roy Porter, eds., The Ferment of Knowledge: Studies in the Historiography of Science (Cambridge: Cambridge University Press, 1980). ISBN 0-52122599X
- Caroline L. Herzenberg. 1986. Women Scientists from Antiquity to the Present Locust Hill Press ISBN 0-933951-01-9
外部連結
編輯- A History of Science, Vols 1–4, online text
- MIT STS.002 – Toward the Scientific Revolution. From MIT OpenCourseWare, class materials for the history of science up to and including Isaac Newton.
- MIT STS.042 – Einstein, Oppenheimer, Feynman: Physics in the 20th Century. Class materials for the history of physics in the 20th century.
- Contributions of 20th century Women to Physics ("CWP")
- The official site of the Nobel Foundation. Features biographies and info on Nobel laureates
- The Institute and Museum of the History of Science in Florence, Italy