用户:TNTErick/Draft:k Restriction

证明之定理同应用

编辑

应用一: 项链分割问题

编辑

项链分割,或更精确地说,k-段,t-相项链分割,指的是

A k-wise t-way splitter is a set of partitions of [m] into b sets, so that for every k coordinates within [m], each having a color in [t], there exists a partition so that every set 1 ≤ j ≤ b contains the same number of coordinates of each color up to rounding. This is a generalization of the existing notion of a splitter introduced by [18]. Splitters are multi-way splitters for t = 1. Splitters and multi-way splitters are used to split a problem of the form “for every k coordinates,...” into b problems of the form “for every dk/be coordinates,...”. The advantage of 2 multi-way splitters is that they give more control on the split. They allow us to split a problem of the form “for every k coordinates, for every partition of the coordinates into t types,...” into b problems of the form “for every dk/be coordinates, for every partition of the coordinates into t types,...”.

定理3

编辑

A k-wise t-way splitter for splitting m coordinates into b blocks of size   where  , may be constructed in time poly (m, t^k and the size of construction) .