公式中i表示虛數單位,即: i = − 1 {\displaystyle i={\sqrt {-1}}}
虛次代數方程 x ( 3 + 2 i ) + x = 1 {\displaystyle x^{(3+2i)}+x=1} 與
虛次代數方程 − 2 ( 3 1 3 ) + 2 1 3 ( 9 x i + ( 12 + 81 x 2 i ) ) 2 3 6 2 3 ( 9 x i + ( 12 + 81 x 2 i ) ) 1 3 = x 1 + i {\displaystyle {\frac {-2(3^{\frac {1}{3}})+2^{\frac {1}{3}}{\bigg (}9x^{i}+{\sqrt {(12+81x^{2i})}}{\bigg )}^{\frac {2}{3}}}{6^{\frac {2}{3}}{\bigg (}9x^{i}+{\sqrt {(12+81x^{2i})}}{\bigg )}^{\frac {1}{3}}}}=x^{1+i}}
有部分相同之解
驗證網址和輸入框內輸入的代碼
http://www.wolframalpha.com
(-2 3^(1/3) + 2^(1/3) (9x^i+ sqrt(12 + 81 (x^(2i))))^(2/3))/(6^(2/3) (9x^i + sqrt(12 + 81 (x^(2i))))^(1/3))=x^(1+i)
n為正奇數的一元n次代數方程 x n + p x = q , p > 0 {\displaystyle x^{n}+px=q,p>0}
不存在兩個相同的根.
<<School:李煌數學研究院