HKUST-1的性质
本研究的旨在对HKUST-1的性质进行罗列整理。
基本信息
编辑结构性质
编辑结构性质 | |
---|---|
晶体结构 | 面心立方 |
空间群 | Fm3m[2] |
晶胞参数 | a=26.2833(2)(100 K) a=26.2600(3)(356 K) a=26.2424(4)(500 K)[2] |
键长 | Cu-Cu:2.628(2) A Cu-OCO:1.952(3) A Cu-OH2 = 2.165(8) A[3] |
键角 | |
孔径 | 4.0 ~ 8.0 A[4] |
CCDC数据库 | 链接 |
晶胞原子统计 | |
原子质量比(原子数比) | C 35.7% (46.2%) H 1.00% (15.4%) O 31.7% (30.8%) Cu 31.5% (7.7%)[5] |
差分电荷 (晶胞内原子数)[6] |
Cu 1.098 (48) O −0.665 (192) 羧基C 0.778 (96) 苯环C(连接羧基) −0.092 (96) 苯环C(连接H) −0.014(96) 苯环H 0.109 (96) |
表面化学性质
编辑气体吸附 | |
---|---|
二氧化碳 | 11.21 mmol/g(乙二胺溶剂热法,293 K、1 MPa)[7] |
甲烷 | 9.84 mmol/g(DMF溶剂热,处理温度230 °C)[8] |
氮气 | ~400 cm3/g(乙酸和乙醇混合溶剂,STP)[9] |
溶质吸附 | |
噻吩 | 进料量 310 mg/L 穿透点 32 mL/g (固定床)[10] |
刚果红 | 400 mg/g(DMF溶剂热,微量HBF4存在)[11] |
谱图性质
编辑UV-Vis | |
---|---|
λmax | |
Extinction coefficient | |
IR | |
Major absorption bands | 参见文献[12] |
MS及TG | |
热重分析 | 523 K(失去框架中吸附的水分子及所含的有机溶剂) 583~643 K(框架分解)[13] |
XRD | |
XRD图谱 | 参见文献[12][14] |
参考文献
编辑- ↑ WolframAlpha. [2019-1-28]
- ↑ 2.0 2.1 Yue Wu, Atsushi Kobayashi, Gregory J. Halder, Vanessa K. Peterson, Karena W. Chapman, Nina Lock, Peter D. Southon, Cameron J. Kepert. Negative Thermal Expansion in the Metal-Organic Framework Material Cu3(1,3,5-benzenetricarboxylate)2. Angewandte Chemie International Edition. 2008-11-03, 47 (46): 8929–8932 [2018-04-16]. ISSN 1521-3773. doi:10.1002/anie.200803925 (英语).
- ↑ Stephen S.-Y. Chui, Samuel M.-F. Lo, Jonathan P. H. Charmant, A. Guy Orpen, Ian D. Williams. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science. 1999-02-19, 283 (5405): 1148–1150 [2018-04-16]. ISSN 0036-8075. doi:10.1126/science.283.5405.1148 (英语).
- ↑ Nak Cheon Jeong, Bappaditya Samanta, Chang Yeon Lee, Omar K. Farha, Joseph T. Hupp. Coordination-Chemistry Control of Proton Conductivity in the Iconic Metal–Organic Framework Material HKUST-1. Journal of the American Chemical Society. 2011-12-14, 134 (1): 51–54 [2018-09-02]. ISSN 0002-7863. doi:10.1021/ja2110152 (英语).. Supporting Information.
- ↑ Cu3(C9H3O6)2原子统计. Retrieved from WolframAlpha. [2018.9.3]
- ↑ Nadeen Al-Janabi, Xiaolei Fan, Flor R. Siperstein. Assessment of MOF’s Quality: Quantifying Defect Content in Crystalline Porous Materials. The Journal of Physical Chemistry Letters. 2016-04-07, 7 (8): 1490–1494 [2018-09-03]. ISSN 1948-7185. doi:10.1021/acs.jpclett.6b00297 (英语). Supporting Information
- ↑ Song F J, Rose M, Senkovska I, et al. A protophilic solvent-assisted solvothermal approach to Cu-BTC for enhanced CO2 capture. Appl Organomet Chem, 2015, 29(9): 612
- ↑ 宋佳, 王刚, 赵亮,等. 程序升温处理对HKUST-1吸附甲烷性能的影响[J]. 石油化工, 2015, 44(5):586-589.
- ↑ 郑丽明, 朱智洪, 孙惠惠,等. 模板法制备介微双孔HKUST-1材料[J]. 功能材料, 2015, 46(11):11112-11117.
- ↑ 那立艳, 张丽影, 张伟,等. 室温下金属有机骨架材料Cu3(BTC)2的合成与表征[J]. 功能材料, 2015, 46(12):12079-12081.
- ↑ 王蕾, 张金苗, 吕建波,等. HKUST-1晶格空位的构建及对偶氮染料吸附的影响[J]. 环境工程学报, 2018(5).
- ↑ 12.0 12.1 Zong-Qun Li, Ling-Guang Qiu, Tao Xu, Yun Wu, Wei Wang, Zhen-Yu Wu, Xia Jiang. Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Materials Letters: 78–80. [2018-04-16]. doi:10.1016/j.matlet.2008.09.010.. Supplement Information for IR data
- ↑ Chunling Xin, Xi Jiao, Yanlong Yin, Haijuan Zhan, Hongguang Li, Lei Li, Ning Zhao, Fukui Xiao, Wei Wei. Enhanced CO2 Adsorption Capacity and Hydrothermal Stability of HKUST-1 via Introduction of Siliceous Mesocellular Foams (MCFs). Industrial & Engineering Chemistry Research. 2016-03-22, 55 (29): 7950–7957 [2018-09-03]. ISSN 0888-5885. doi:10.1021/acs.iecr.5b04022 (英语).
- ↑ Miyuki HASHIMOTO, Satoshi OKAJIMA, Toshihiro KONDO, Kenji HARA, Wang-Jae CHUN. Thin Film Structures of Metal-Organic Framework [Cu3(BTC)2(H2O)3]n on TiO2(110). Electrochemistry. 2014-05-05, 82 (5): 335–337 [2018-04-16]. ISSN 1344-3542. doi:10.5796/electrochemistry.82.335 (英语).